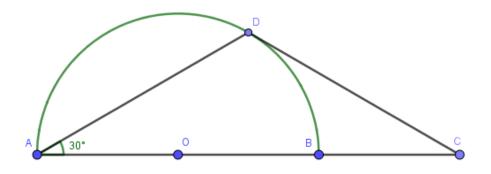
Problem 48

Consider semicircle O with radius r. Diameter \overline{AOB} is extended to point C. Chords \overline{AD} and \overline{CD} are drawn so that $m\angle DAO = 30^{\circ}$ and \overline{CD} is tangent to semicircle O. Find the area of triangle ADC in terms r.



Answer

 $\frac{3\sqrt{3} r^2}{4}$

Explanation

Construct line segment \overline{BD} . Since inscribed triangle ABD shares a side with the diameter which has a length of 2r, we discover that ABD is a 30-60-90 right triangle with $AD = \sqrt{3}r$. Also, since the measure of inscribed angle A is 30° , so is the measure of \widehat{BD} . Therefore, the measure of \widehat{DA} is 60° , and the measure of external angle C is also 30° making triangle ACD isosceles with vertex angle measuring 120° . Thus the area is $A = \frac{1}{2}l^2\sin(120 \text{ deg}) = (\frac{1}{2})(\sqrt{3}r)^2)\frac{\sqrt{3}}{2} = \frac{3\sqrt{3}r^2}{4}$