Problem 24

Let $\{a_i\}_{i\geq 1}$ be a positive geometric sequence with common ratio r and k^{th} term of 1. Let $\{b_i\}_{i\geq 1}$ be an arithmetic sequence with common difference d. If $\{b_i\}_{i\geq 1} = \{\log(a_i)\}_{i\geq 1}$, what is $\frac{b_1}{d}$?

Answer

1-k

Explanation

If the k^{th} term of $\{a_i\}_{i\geq 1}$ is 1, then the closed form in terms of n is:

$$a_n = r^{1-k} r^{n-1}$$

Thus, the closed from of $\{b_i\}_{i\geq 1}$ in terms of n is:

 $b_n = \log(a_n) \Rightarrow b_n = \log(r^{1-k}r^{n-1}) \Rightarrow b_n = \log(r^{1-k}r^{n-1})$ $\Rightarrow b_n = (1-k)\log(r) + (n-1)\log(r)$

Thus $b_1 = (1 - k) \log(r)$ and $d = \log(r)$, so

$$\frac{b_1}{d} = \frac{(1-k)\log(r)}{\log(r)} = 1-k$$